Brain aging and testosterone-induced neuroprotection: studies on cultured sheep cortical neurons.
نویسندگان
چکیده
OBJECTIVE This research reports the expression of topoisomerase βII in fetal sheep neuronal cells. The β isoform of DNA topoisomerase II plays a role in DNA repair process in non proliferating cells as neurons and its expression tends to be downregulated with senescence. METHODS Cortical neurons from 60-day-old sheep embryos underwent two protocols: the former based on rising time of culture (10, 20 and 30 days); the latter based on the 72hrs exposure to 3-nitro-L-tyrosine (oxidative/nitrosative stressor) and/or testosterone. RESULTS Our results showed an increase in β-galactosidase activity and, in contrast, a reduction in topoisomerase βII expression with time (first protocol). The exposure of sheep primary neurons to 3-nitro-L-tyrosine led to an upregulation of βII topoisomerase expression to be likely seen as a reaction to nitrosative stress. Testosterone addition to 3-nitro-L-tyrosine-exposed cells results in topoisomerase βII decrease possibly due to the neuroprotective properties of testosterone (second protocol). No significant variations in the marker of aging β-galactosidase were observed in the cells exposed to 3-nitro-L-tyrosine and testosterone. CONCLUSION The protocol based on time could be of some interest as a model of neuronal senescence in vitro. Topoisomerase βII decrease with aging likely indicates a reduced ability to repair DNA during neuronal senescence. In contrast, the second protocol may not be seen as a reliable model of aging since 3-nitro-L-tyrosine does not lead to a topoisomerase βII decrease. Testosterone was able to cope with oxidative/nitrosative damage, allowing cells to reduce their needs in DNA repair which in turn leads to a downregulation of topoisomerase IIβ expression.
منابع مشابه
Selective regulation of neurosteroid biosynthesis under ketamine-induced apoptosis of cortical neurons in vitro
Numerous studies have suggested that ketamine administration can induce neuroapoptosis in primary cultured cortical neurons. Neurosteroids modulate neuronal function and serve important roles in the central nervous system, however the role of neurosteroids in neuroapoptosis induced by ketamine remains to be elucidated. The present study aimed to explore whether neurosteroidogenesis was a pivota...
متن کاملSelective androgen receptor modulator RAD140 is neuroprotective in cultured neurons and kainate-lesioned male rats.
The decline in testosterone levels in men during normal aging increases risks of dysfunction and disease in androgen-responsive tissues, including brain. The use of testosterone therapy has the potential to increase the risks for developing prostate cancer and or accelerating its progression. To overcome this limitation, novel compounds termed "selective androgen receptor modulators" (SARMs) ha...
متن کاملThe Neuroprotective Effects of Long-Term Repetitive Transcranial Magnetic Stimulation on the Cortical Spreading Depression-induced Damages in Rat’s Brain
Introduction: Cortical Spreading Depression (CSD) is a propagating wave of neural and glial cell depolarization with important role in several clinical disorders. Repetitive Transcranial Magnetic Stimulation (rTMS) is a potential tool with preventive treatment effects in psychiatric and neuronal disorders. In this paper, we study the effects of rTMS on CSD by using behavioral and histological a...
متن کاملRapid Hypoxia Preconditioning Protects Cortical Neurons From Glutamate Toxicity Through -Opioid Receptor
Background and Purpose—Hypoxia preconditioning (HPC), rapid or delayed, has been reported to induce neuroprotection against subsequent severe stress. Because -opioid receptor (DOR) plays an important role in delayed HPC-induced neuroprotection against severe hypoxic injury, we asked whether DOR is also involved in the rapid HPC-induced neuroprotection. Methods—Cultured rat cortical neurons at c...
متن کاملRapid hypoxia preconditioning protects cortical neurons from glutamate toxicity through delta-opioid receptor.
BACKGROUND AND PURPOSE Hypoxia preconditioning (HPC), rapid or delayed, has been reported to induce neuroprotection against subsequent severe stress. Because delta-opioid receptor (DOR) plays an important role in delayed HPC-induced neuroprotection against severe hypoxic injury, we asked whether DOR is also involved in the rapid HPC-induced neuroprotection. METHODS Cultured rat cortical neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro endocrinology letters
دوره 34 5 شماره
صفحات -
تاریخ انتشار 2013